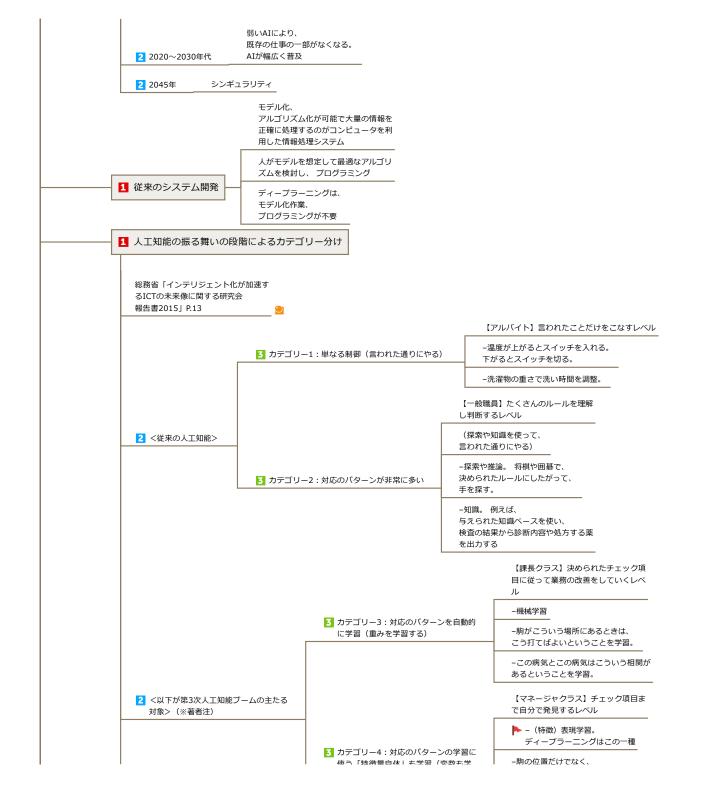
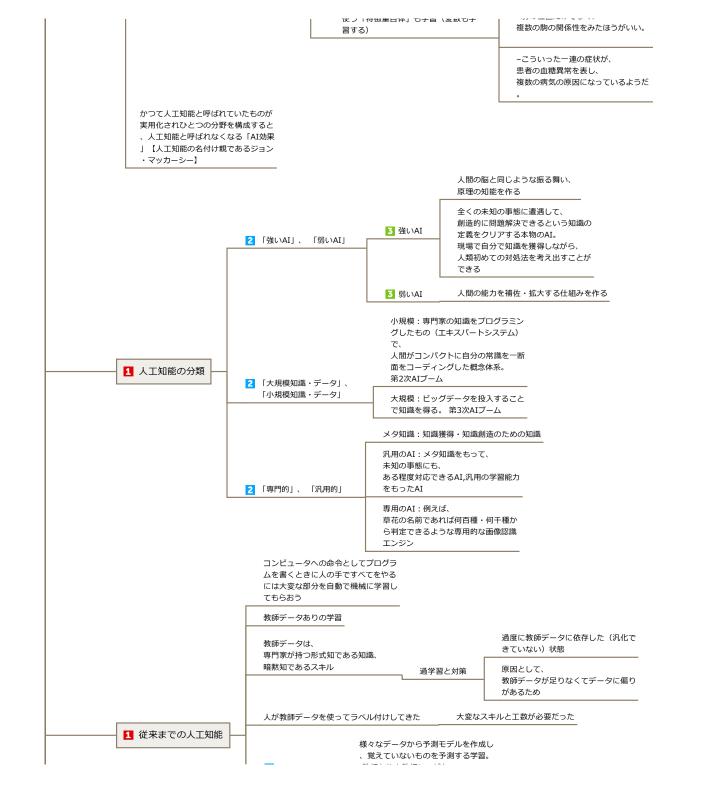
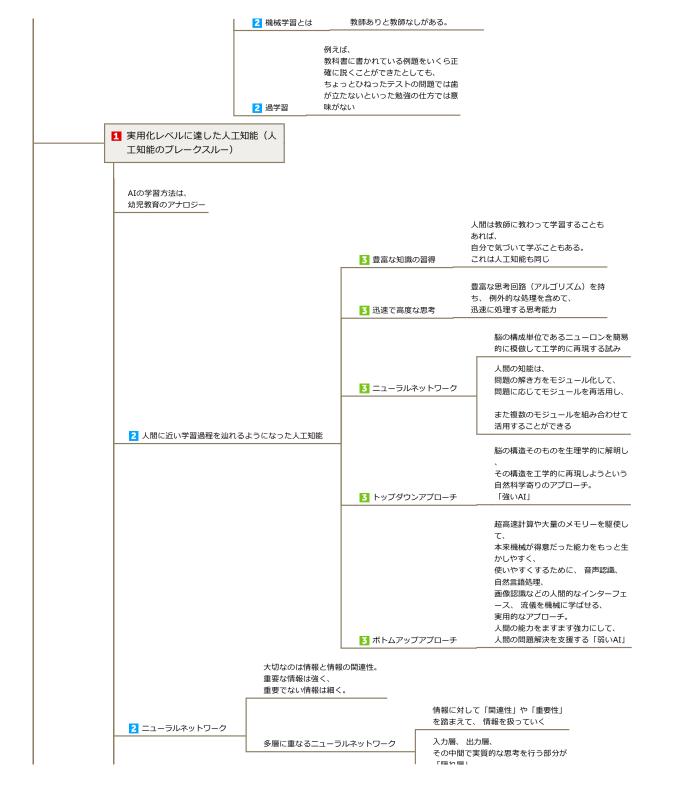

DAX20-04_AIに関する基礎知識(まとめ)		
	_	AIに関連する基礎知識として、各種文献の内容を要約したもの
	2 概要	「攻めのIT経営」を行うに当たって、AIの活用は不可欠。AIを活用するに当たっての基礎知識としての利用を想定
		絵でわかる人工知能 明日使いたくなるキーワード68【2017年 三宅陽一郎】
		ビジネスマンのためのビッグデータ解析:知の集合体・最先端人工知能の活用
		人工知能「超入門」ディープラーニン グの可能性と脅威(Impress QuickBooks)
		よくわかるディープラーニングの仕組 み【谷田部卓】
		ビジネスで使う機械学習【谷田部卓】
		非エンジニア、 文系、 ビジネスマンのための人工知能入門: 数式が苦手なあなたにおすすめ
		人工知能(AI)活用時代に必要とされ る能力とは?ビジネスで差がつく「デ ータサイエンスカ」
		グーグルに学ぶディープラーニング (日経ビッグデータ)
	2 参考文献	2020年を見据えたグローバル企業のIT戦略 IoT編
1 この要約資料の概要		平成28年度情報通信白書【総務省】
		人間の仕事を奪う「AI」の過去・現在・未 来 蘊蓄の箪笥 100章 経済ニュースの新基準 【2017年04月 15日東洋経済オンライン】
		IT人材白書2017【2017年4月25日IPA】
		第四次産業革命を視野に入れた知財シ ステムの在り方について【2017年4月 19日METI】
		科学技術イノベーション総合戦略201 7(案)【2017年4月21日】
		新産業ビジョン【2017年5月METI】
		人工知能技術戦略(案)
		知的財産推進計画2017(2017年5月1 6日内閣官房知的財産戦略本部)
		「デジタルトランスフォーメーション 」【2016年9月ベイカレント・コンサ エルティング】
		2022年1月26日 改版

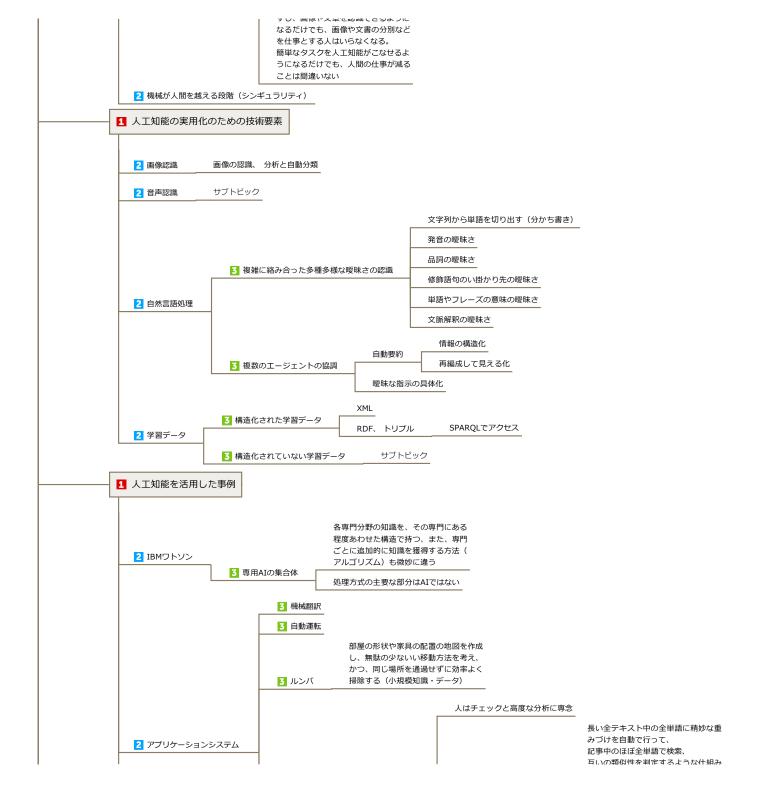

人間がコンパクトに自分の常識を一断 面をコーディングした概念体系。 第2次AIブーム

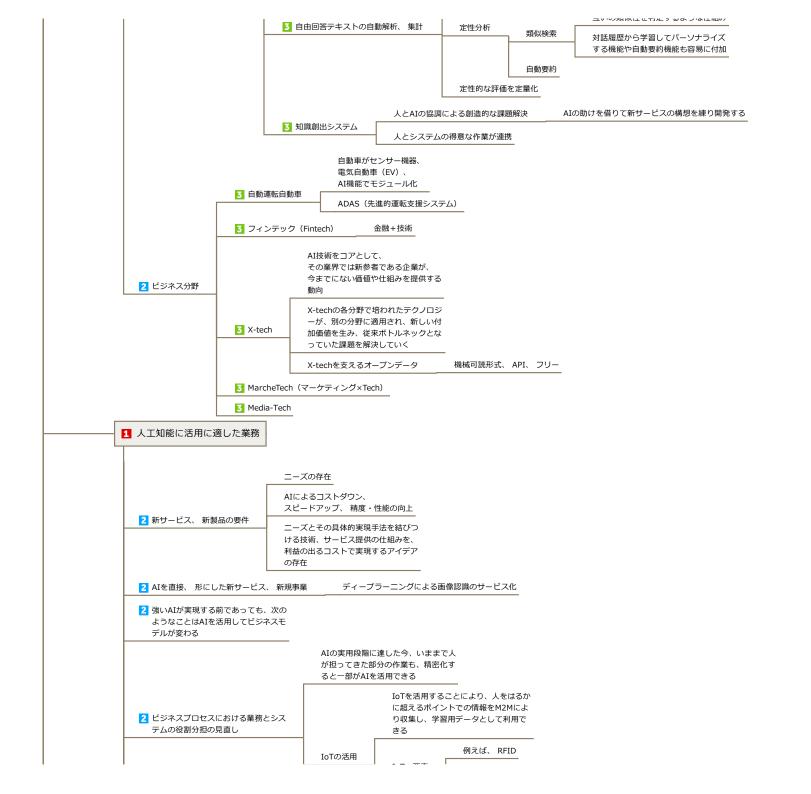

> 同じ基本機能を用いて対象を取り換えて、正解データを作り、 トレーニングするだけで、 新たなプログラミングなしで、 精度向上をさせることができる


今のAIは人間の能力を補完できる部分が多くなった

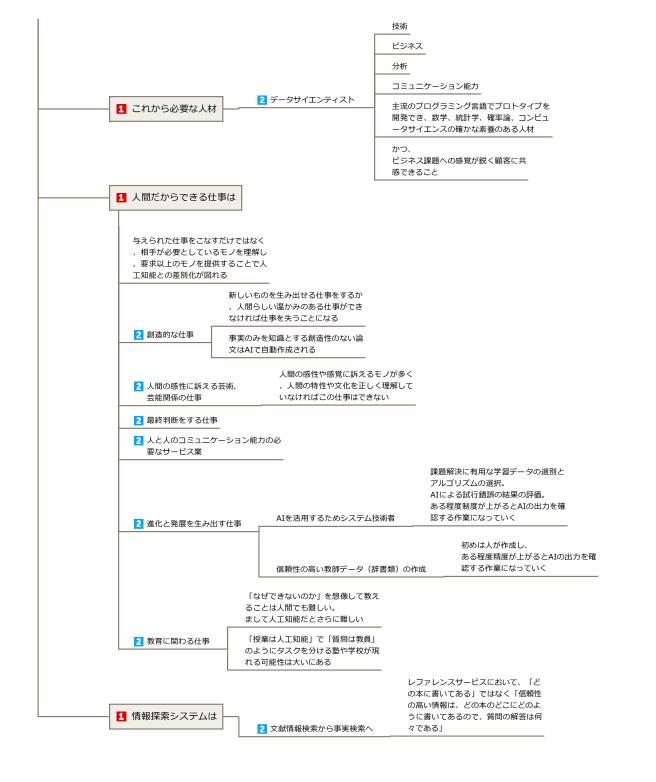
今のAIは人間の能力を補完できる部分が多くた	ぱつに 相及内工をさ	させることができる	
2011年音声認識コンテスト			
2012年画像認識コンテスト			
2016年9月末、 Facebook, Amazon, Google, IBM, Microsoftの5社が、 AIに関して歴史的な提携を発表	http://gigazine.net/news/2016092 9-partnership-ai-facebook-amazon -google-ibm-microsoft/		
	世の中にあふれている し、これを図書館学的 蓄積、利用するという 下記のような情報に関 問を身につける必要が 生】	立場から収集、 ことになれば、 係する様々な学	
		形態素解析、 重要語の抽出、 シソーラス・オントロジーの作成、 かな漢字変換、 固有名詞・未知語の認識、 辞書学	
		クラスタリング、 分類学 構文解析、	
	A:自然言語分野	構义時が、 類似意味の文・文章の同定、 否定文の解析と対立する肯定文の同類	
		人とシステムとの対話、 文生成	
		テキストマイニング、 文章分析、 自動要約、 機械翻訳、 質問応答システム、 対話システム	
		音声分析、 音楽分析、 アクセント イントネーション抽出、 ボーズ区間の検出、 メロディの抽	
	B:音声・音楽分野	音声認識、 音楽から楽譜へ	
		音声合成、 音楽生成	
		パターン認識理論、 特徴抽出理論、 文字認識、 画像ディジタル化・圧縮技術、 スペクトル分析	
3 基礎となる学問分野・情報科学の進展		画像処理・変換技術、 歪補正技術 画像認識・理解、 画像検索技術、 電子透かし技術	
■ 整架になる子向刀打・情報付子の進放	- C:画像・映像分野	映像処理、 映像圧縮、 映像認識技術、 部分映像検索技術	
		マンガ、 アニメ生成技術、 ゲーム	
		コンピュータグラフィックス	
		マルチメディア技術、 ヒューマン・インターフェイス	

プログラミング、 ソフトウェア、 2 AIが実用レベルに達したのは システム、 OS データベースの理論と実際 ソフトウェア工学、 デバック技術、 ゲームソフト D: コンピュータ・ソフトウェア、 情報通信 ネットワーク・ソフト、 ウェブ技術、 検索エンジン技術 暗号理論、 セキュリティ技術 知識表現、 セマンティック・ウェブ 辞書学、百科辞典学 編集工学 E:知識工学、 人工知能 推論技術 エキスパートシステム、 問題解決、 学習 著作権 、 知的所有権 、 クリエイティブ・コモンズ F:図書館学、図書館情報学 大量のデータが発生、 流通し、 手軽に使えるようになった インターネット上での玉石混合の情報 に加え、 信頼性の高い情報がオープンデータと して利用可能になってきた インターネット上に分散するデータ群 あたかも一つのデータベースに見せる 3 ビッグデータが利用可能に 技術も発達 データ・マイニング パターンやデータ間の相互関係を発見する 対象とする情報についての何らかの結 ビッグデータを活用するためにはAIが必要。 論をいくつか引き出す目的で生データ を検査・分析する科学的手法 データ・アナリティクス 推論を行い、 意思決定を行う CPUのパワーが前回の人工知能ブーム 時の何千倍、 何万倍になった 単純作業の反復、 総当たりチェックする能力が指数関数 的に向上 3 コンピュータの高性能化 スパコンを利用しなくても、 クラウドサービスレベルのコンピュー 夕で大量の情報の試行錯誤的ぶんせき が可能になった 専門家の知識だけでは過学習になる可 能性があるが、 ビッグデータの分析から得られた実績 値による知識を自動生成 それにより、 ディープラーニングが可能になった




「隠れい官」 初めは人が その後はAIにより、「局所解」 人がアルゴリズムを選択し、 2 AIが自ら辞書を整備していく 試行錯誤(実行、 評価の繰り返し)により最適解を導く 強化学習 生データとその正解ラベルや別の生デ - 夕の対応関係をトレーニング。 人間があらかじめ与えた正解を出せず に失敗したとき時には正解に至る確率 を上げるべく、 各層間の結合線上の重みを調整するや ディープラーニングでの学習を簡単に言うと り方での学習⇒トレーニング ディープラーニングは、 原理を生物の脳に求めており、 ニューロンとシナプスを模したものが ラベルが付いていないデータを用いて、 ディープラーニングは、 「適切な特徴抽出能力をもつ教師なし ニューラルネットワークを多層にして 構築したもの」 特徴抽出能力とは、 何が関連して何が関連していないかを 特徴抽出能力とは、 理解できる能力 非常に画期的だったことは、 ニューラルネットワークの情報同士の つながりをある意味「自動設定」でき るようにしたこと 人間が教えなくても自ら特徴を抽出し て理解することができる 従来は特徴量抽出手法を、 画期的なこと 場合に応じて使い分けを人の手で意図 的に行う必要があった。 しかし、 ディープラーニングでは、 特徴量抽出の部分自体も学習による自 動で獲得することができるようになっ 2 ディープラーニング た ただ大量であるだけでなく、 質が求められる 実際には、 学習において教師ありのラベル付きデ ータが必要となるため、 データに対してラベル付を人の手で行 学習させるデータの課題 うことになる。 データ量が増えるほど学習精度はあが る一方、 ラベル付する量や時間的コストも大き


> 手法自体の発展が目覚ましいわけでな く、


くなる

	課題		コンピュータ計算処理能力がやっと理論に追いついた状況
			実際の脳のニューロンの構造的には、 横に広く浅いことが知られているが、
		根本的なディープラーニングの手法の見直し	現在のディープラーニングは縦に層を 深くするほど精度が改善しているのが 現状
			今後はデータを見て、 ディーブラーニング自体が自からのネ ットワーク構造を最適化して決定して いくような仕組みも必要となる
		「No Free Lunch定理」どんな問題やどんなデー タに対しても最高の精度を出せる万能 なアルゴリズムは存在しないという定 理	
		2005年以降10年ほどで、 APIの活用が当たり前となった	
		全てのアプリケーションを自作する必要がない	
		企業は今、 自社の様々な情報やサービスへのアク セスを、 APIを通じてオーブン化しようとして	
ı	API連携 ——	いる	
2 エージェント指向			商用ベースでAPIを提供し、 APIが相互日機能提供し、 通信することで協同で問題解決を行い 、業務フローを回し、 売り上げをシェアできるようになって
		5 W1Hメタデータを活用したデータ連携 	<u>きた</u>
	エージェン h つけたり、	·が互いに適切な相手を見	
	てい 情と	E、「自分自身が世界の中で存在し Nることを意識し、物事に接して感 E理性で考え、 判断し、 発言し、 Dする」ような、「強いAI」はまだ	
	「牧	Eしていない。 事を忘れたり、嘘をついたり」と た人間の「弱み」も真似できてい 	
		の関連性を理解して特徴を見出す ううのは非常に人間らしい「理解」 法	
2 ディープラーニングの	が気	でに人間が知らない特徴に人工知能 でくようになり、 の代わりに名前を付けるようにな も知れない	
	の担	ープラーニングを超える人工知能 技術が生まれてくる可能性もありま . 画像や立音を認識できストラに	

